
NYSDOT Task 2.A Extension

Transit Schedule Data Exchange Architecture (TSDEA)

SDP Guidance Documentation

PART 3 – SDP Programmer’s Guide

Version 1.0

June 30, 2008

By

Consensus Systems Technologies, Inc.

617-983-3364

Prepared for:
New York State Department of Transportation

Part 3 – SDP Programmer’s Guide 30 June 2008

Table of Contents

1. OVERVIEW .. 5

1.1. Purpose of Document... 5

1.2. Document Structure and Objectives... 5

1.3. Programmer’s Guide Organization.. 6

2. A GUIDE TO TRANSLATING NATIVE DATA TO SDP................................. 7

2.1. Templates, Quick Start and User Requirements Guidance.. 7

2.2. A Simple Process for Translating Native to SDP .. 7

2.3. Using the SDP Template Spreadsheet .. 9

3. GUIDANCE ON BUILDING A PHYSICAL DATABASE FROM THE SDP... 10

3.1. Conceptual Data Reference Model as a Framework for Implementation Methods................. 10

3.2. Differences between the SDP CDRM and Implementation Methods .. 10

3.3. An Example of Migrating the CDRM to a Logical, Physical and XML Schema Representation
 11

3.3.1. Example of the Conceptual Data Reference Model....................................11
3.3.2. Example of the Logical Entity-Relationship Representation......................12
3.3.3. Example of the Physical Database Implementation....................................14

3.4. Database Scripts and Referential Integrity Issues... 16
3.4.1. Referential Integrity Issues ...16
3.4.2. Temporal Integrity Issues ...19

3.5. Implementation of a SDP Database in MS Access... 20
3.5.1. Software Installation ...20
3.5.2. Data Files ..21
3.5.3. Application Execution ..22

4. USING THE SDP XML SCHEMA FOR XML DOCUMENT VALIDATION ... 24

4.1. Introduction.. 24

4.2. Structure of the SDP XML Schema.. 24

4.3. Structure of the Schedule Calendar Date (SCD) XML Schema... 25

4.4. Elements of the XML Schema... 25

4.5. Validating XML Documents Using the XML Schema .. 25

SDPG_Part3_Programmers Guide_v1_0pdf 2

Part 3 – SDP Programmer’s Guide 30 June 2008

4.6. Using Altova XMLSpy... 25

4.7. Microsoft MSXML2 Windows Scripting Host Application.. 29
4.7.1. Software Installation ...29
4.7.2. Application Execution ..29

5. APPENDIX A: MSXSD.JS SOURCE AND BATCH FILES......................... 31

6. APPLICATION DESIGN REFERENCE MANUALS..................................... 32

6.1. Introduction.. 32
6.1.1. Intended Audience ..32
6.1.2. SDP Application User’s Manuals ...33

6.2. SDP Application System Architecture ... 33

6.3. SDP Application Module Descriptions ... 35

6.4. Application Development Environment ... 35
6.4.1. Open Source – Open Platform ..35
6.4.2. Operating Systems ..35
6.4.3. Data Encoding Formats...35
6.4.4. Databases ..36
6.4.5. Programming Languages ..36
6.4.6. Directory Structure..36

6.5. Appendix A: LIBus2Sdp Conversion Setup and User’s Manual .. 37

6.6. Appendix B: RTIF2Sdp Conversion Setup and User’s Manual ... 37

6.7. Appendix C: STIF2Sdp Conversion Setup and User’s Manual.. 37

6.8. Appendix D: SDP Csv2Xml Conversion Setup and User’s Manual ... 37

6.9. Appendix E: SDP Xml2Csv Conversion Setup and User’s Manual ... 38

6.10. Appendix F: SDP Csv2Gtfs Conversion Setup and User’s Manual.. 38

7. THE SDP AND METADATA .. 39

7.1. Introduction.. 39

7.2. What is SDP Metadata?... 39

7.3. Why SDP Metadata.. 39

7.4. SDP Metadata XML Schema .. 40
7.4.1. Overview...40
7.4.2. SDP Metadata Requirements ..40
7.4.3. Metadata XML Schema Model...42

SDPG_Part3_Programmers Guide_v1_0pdf 3

Part 3 – SDP Programmer’s Guide 30 June 2008

SDPG_Part3_Programmers Guide_v1_0pdf 4

7.5. Appendix A: XMLSpy Schema Notation .. 52

Table of Tables
Table 1: CDRM Entity with its Identifying and Non-Identifying Keys16
Table 2: SDP Access Database Operating System and Version Requirements.................21
Table 3: SDP Application List ...32
Table 4: Requirement Description for SDP Metadata ...40

Table of Figures
Figure 1: Structure of SDP Four Guidance Documents...5
Figure 2: SDP Translation Process ..8
Figure 3: Conceptual ER Model of Schedule Calendar Date Concept..............................12
Figure 4: Migrating from Conceptual to Logical Model ...13
Figure 5: Logical Model of Schedule Calendar Date Concept ..14
Figure 6: Physical Model of the Schedule Calendar Date ...15
Figure 7: SDP Database Application Directory Structure ...21
Figure 8: SDP Startup Macro Initialization Directory Prompt ..22
Figure 9: SDP Startup Macro Initialization Directory Results ..23
Figure 10: XMLSpy SDP Project File at Startup...27
Figure 11: XMLSpy Showing Validation Errors...28
Figure 12: MSXSD Application Showing a Validation Report ..29
Figure 13: MSXSD Application Showing Validation Error Report..................................30
Figure 14: Schedule Data Processing Data Flow Diagram..34
Figure 15: SDP Directory Structure Hierarchy..36
Figure 16: High Level SDP Metadata XML Schema ..43
Figure 17: Metadata SDP XML Schema Model (from XMLSpy)44
Figure 18: SDP Metadata Attribute Group ..45
Figure 19: SDP Metadata XML Schema Fragment of Identification Element..................46
Figure 20: SDP Metadata XML Schema Fragment of Description Element.....................47
Figure 21: SDP Metadata XML Schema Fragment of Status Element48
Figure 22: SDP Metadata XML Schema Fragment of Distribution Information Element 49
Figure 23: SDP Metadata XML Schema Fragment of Data Quality Element...................49
Figure 24: SDP Metadata XML Schema Fragment of Spatial Data Element....................50
Figure 25: SDP Metadata XML Schema Fragment of Code Set Element.........................50
Figure 26: SDP Metadata XML Schema Fragment of Special Conventions Element51
Figure 27: Example of the XMLSpy Diagram Notation ...53

Part 3 – SDP Programmer’s Guide 30 June 2008

1. Overview

1.1. Purpose of Document
This SDP Programmer’s Guide is intended to assist developers and technical users in
understanding how to convert agency schedule information into SDP format to allow the
efficient exchange of schedule information between agencies in the New York City region. Part
3 SDP Programmer’s Guide contains several manuals that include tools, applications, physical
databases, and XML Schema descriptions for implementation. Each Chapter is developed as a
self-contained unit. Hyperlinks and file objects are embedded in the document for quick access.

All the applications and user manuals included in this document were tested, however, in the
event of a problem, please send a bug report to: tsdea@consystec.com.

1.2. Document Structure and Objectives
The SDP Programmer’s Guide is meant to provide technical information on the SDP to technical
users, System Integrators and Application Developers. In order to meet the needs of the varied
set of stakeholders a series of four Guidance documents were developed, as shown in Figure 1.

WhyWhy

WhatWhat

HowHow

What if…What if…

WhyWhy

WhatWhat

HowHow

What if…What if…

1. Overview
-- why, what and map of documentation

2. Requirements Manual
-- what is approach and requirements

3. Programmer’s Manual
-- how and other technical guidance

4. Troubleshooting
Manual

-- lessons and support for issues

Figure 1: Structure of SDP Four Guidance Documents

The four sets of documents provide increasing levels of detail in understanding SDP and
performing conversion of agency data to the SDP standardized format.

 Part 1 is intended for Program Managers, Analysts, Developers, and System Integrators.
It provides an overview of SDP, including a high level overview of SDP model, as well
as a discussion of resources and a glossary.

SDPG_Part3_Programmers Guide_v1_0pdf 5

Part 3 – SDP Programmer’s Guide 30 June 2008

SDPG_Part3_Programmers Guide_v1_0pdf 6

 Part 2 is intended for Analysts and provides a more detailed framework & approach for
the SDP, as well as a summary of the requirements that drove the development of the
SDP.

 Part 3 is intended for Application Developers. It includes the data mapping approach,
detailed conversion programs and user manuals, transformations, algorithms, “cheat
sheets”, as well as implementation guidance on developing a physical database and XML
validation.

 Part 4 is intended for System Integrators and Developers. It answers implementation
questions, addresses integration issues (i.e., FAQ), and suggests solutions to commonly
encountered problems. [Note: Part 4 will be implemented as part of the ongoing SDP
Operations and Maintenance.]

This document is Part 3 – SDP Programmer’s Guide.

1.3. Programmer’s Guide Organization
The SDP Programmer’s Guide is divided into six stand-alone sections. Following this chapter,
the Programmer’s Guide contains five sections, including:

 Chapter 2: A Guide to Translating Native Data to SDP
 Chapter 3: Guidance on Building a Physical Database
 Chapter 4: Using the SDP XML Schema for XML Document Validation
 Chapter 5: Application Design Reference Manuals
 Chapter 6: SDP and Metadata

Each section may include hyperlinks to software, database or other large document. In addition,
embedded files may be included in some chapters (e.g., the Application Design Reference
Manual embeds six reference manual for six applications developed for the SDP).

Part 3 – SDP Programmer’s Manual 30 June 2008

2. A Guide to Translating Native Data to SDP
The Guide to Translating Native Data to SDP describes the Guidance documents and tools, as
well as a straight-forward process to map native schedule data to the SDP data concepts and
formats.

This manual is written for a technical reader who has XML, programming or database
experience, and who has knowledge of the procedures used to translate one format to another.

2.1. Templates, Quick Start and User Requirements Guidance
Several Guidance documents and tools were developed to support the translation of native data
to SDP. The most useful documents for the “uninitiated” SDP translator are the following:

 SDP Quick Start Guide (http://www.consystec.com/tsdea/rstwg/SDP_QS_web.htm). This
web document provides a high level overview of the requirements for translating native data
to the mandatory elements of the SDP XML Document. Each mandatory element is
described, along with its format and an example of its usage. In addition, conventions and
code values are included in the document.

 SDP Template Spreadsheet. This MS Excel spreadsheet contains several pages that describe
the entire SDP XML Schema (mandatory and optional). The template includes a
comprehensive data concept glossary, as well as a description of all the codes and their
values. The template will be described in Section 2.3 below.

 SDP Guidance Documents. As described in Section 1.2, the Guidance Documents consist of
four parts (Ed. Note: part 4 will be implemented when the TSDEA is operating). Part 2:
User Requirements Manual may be used as a comprehensive reference.

o SDP Guidance Document Part 2 User Requirements: Part 2 may be used as a reference
manual to view detailed examples of how different organizations map their native data to
the SDP. In addition, the context and requirements related to the SDP data concepts are
explained in this document. Chapters 4 through 10 describe how to map native data to
the SDP data concepts by each branch in the SDP XML Schema. Appendix A:
Considerations for Rail Transit discusses how to apply the SDP concepts to rail concepts,
particularly those that differ from bus transit. A glossary is included in Appendix B of
this document.

2.2. A Simple Process for Translating Native to SDP
The process described in this section is similar to one used by many software developers to map
one data format to another. As depicted in Figure 2, there are four major steps needed to map
native data to SDP.

SDPG_Part3_Programmers Guide_v1_0pdf 7

Part 3 – SDP Programmer’s Manual 30 June 2008

3. Know native
Schedule and
related data
semantics/

formats/
sources

SDPG_Part3_Programmers Guide_v1_0pdf 8

Figure 2: SDP Translation Process

Steps to build a native data to SDP XML document translator:

1. Familiarize yourself with SDP data concepts, codes and schema elements. The SDP
Quick Start web document will provide the basic overview. To see more detail on non-
mandatory element, see the User Requirements Manual (Part 2 Guidance document).

2. Check your skills and experience with key technical areas to develop script and code:

 Do you understand XML and SDP Schema organization?
 Do you have experience programming or developing modules for DBMS?
 Do you understand how to validate SDP XML documents?

3. Review your understanding of the semantics, relationships and formats of your
organization’s native schedule and related data set(s) that cover the SDP data
requirements.

4. Map Native Data to SDP concept

Based on your knowledge of your schedule and related data meanings, identify the native
table and field that maps to each SDP mandatory and optional element descriptions.
Using the SDP Template Spreadsheet (to record your findings) or other tool:

 Map native types, flags and codes to SDP codes
 Map and document the obvious native data (and transformations) to SDP
 Identify missing identifiers; strategize on approaches for completing them

while ensuring identifier uniqueness constraints.
 Identify missing mandatory data fields; strategize on approaches for

completing them.
 Identify native data that is not represented (and should be) in the SDP.

5. Develop scripts and modules to translate codes, data types and extract data from native
sources, and load the data into the SDP format.

1. Familiarize
yourself with

SDP Data
Concepts

2. Prerequisites
XML, XML
document,

validation tools,
SW/DBMS

4. Map native
schedule

semantics,
relationships and
formats to SDP
XML Schema
requirements

Develop script for
translating data

Part 3 – SDP Programmer’s Manual 30 June 2008

SDPG_Part3_Programmers Guide_v1_0pdf 9

 You can use the Data Mapper software (csv2xml) application to generate the
XML Document from comma-separate value (csv) files. For information on
applying this method, see Chapter 5.

 You can develop embedded procedures in your database to generate an XML
Document. You can reuse procedures from any of the applications developed
for this project. See Chapter 5 for user manuals and design documents.

2.3. Using the SDP Template Spreadsheet
The SDP Template Spreadsheet provides a useful “cheat sheet” for developing translations
between native data and SDP data concepts. The spreadsheet includes 9 worksheets:

 Notes on How to Use the Template: includes notes on how to use the worksheets.
 CodeList: includes the SDP element name, description, XML code fragment and

guidance on how to use the code values. Guidance includes how to classify special
real-world objects. For example, a subway is a “heavy rail” – HR mode.

 Glossary: defines the data concepts and branch where it is placed.
 Each SDP Branch has its own worksheet. Each worksheet is organized similarly.

The worksheet contains five Columns:
o Required: describes whether the high level element is mandatory [M] or optional

[O]
o Element Name: lists the SDP data concept (high level element)
o Type: lists the XML type or referenced type. This field also includes referential

integrity rules such as unique, identifier (identifying key). A nested element will
list the name of another Element Name (either on the same worksheet or on
another one).

o Questions to Ask: describes the guidance related to a high level, embedded or
nested element.

o Native Format: a placeholder for recording notes on which native data match the
SDP element.

 AgencyRegistration (branch): describes the elements, nested and embedded elements
in the AgencyRegistration branch of the SDP XML Schema. This page also includes
the SDP Document attribute group for the ScheduleVersion data concept.

 Service (branch): describes the elements, nested and embedded elements in the
Service branch of the SDP XML Schema.

 Transit Network (branch): describes the elements, nested and embedded elements in
the Service branch of the SDP XML Schema.

 Transit Gazetteer (branch): describes the elements, nested and embedded elements in
the Transit Gazetteer branch of the SDP XML Schema.

 Transit Facility (branch): describes the elements, nested and embedded elements in
the Transit Facility branch of the SDP XML Schema.

 AddressStructure: describes the data structure for an address. The AddressStructure
is nested in the Agency and TransitStop elements.

The Excel Template may be found at the following link:
http://www.consystec.com/tsdea/rstwg/documents/SDPxml_template_v1_0.xls

http://www.consystec.com/tsdea/rstwg/documents/SDPxml_template_v1_0.xls

Part 3 – SDP Programmer’s Manual 30 June 2008

3. Guidance on Building a Physical Database from the SDP

3.1. Conceptual Data Reference Model as a Framework for Implementation
Methods

As described in Guidance Part 2 volumes, the SDP Project used a system engineering approach
for developing user driven requirements for schedule and related data. A set of Use Cases on
Integrated Trip Planning, Dynamic Generation and Presentation of Public Timetables, and
Generation of Ad Hoc Scheduling were developed to identify the specific schedule data
requirements for these downstream applications. The effort wanted to ensure that the data
meaning and relationships were well defined. A Conceptual Data Reference Model (CDRM)
was developed to meet that need. The CDRM is meant to be used as a framework to
unambiguously describe the SDP data concepts and their relationship to each other. Different
technical methods may be used to physically represent and store schedule data. The three
methods include: logical data model, physical database, and XML Schema. The major objective
of the project was to implement the XML Schema and validate the requirements in one or more
downstream applications (related to the use cases).

The SDP logical and physical methods provide alternative approaches for the storing the data.
Different needs may exist for storing the data using a different method, yet ensuring that there is
a seamless, automated way to transfer the data from format to format. In fact, the csv2xml
application, described in Chapter 5 of this document, uses a comma separated value (csv)
representation which may be described as a logical model of the CDRM to convert native data
using the interim format to an XML document. A physical database is a more efficient way to
store data sets of different versions and multiple agencies together then file server containing
multiple SDP XML Documents.

3.2. Differences between the SDP CDRM and Implementation Methods
The SDP CDRM uses an entity-relationship (ER) method to represent real-world phenomena.
The model is driven by a set of requirements described by current, local practice and by best
practices advocated by the information technology and transit industries. The CDRM uses an
abstract ER diagram (ERD) modeling method to represent these real-world phenomena.
Although a similar notation is used to describe the Logical and Physical models, they do not
include the same information or serve the same purpose. Differences between the CDRM and
Logical, CDRM and Physical and CDRM and XML Schema models are described below.

Difference between a CDRM and SDP Logical Entity Relationship Model: A CDRM
shows the relationship between entities, but does not carry related keys to related entities.
For example, in a system that supports more than one schedule version per agency, the
schedule version identifier must be included in every entity in the logical model. A logical
model (expressed as an ERD) shows these primary and foreign keys, and thus describes key
storage requirements related to the data set. The CDRM makes no assumptions about how a
model is applied; rather, it describes real-world relationships.

SDPG_Part3_Programmers Guide_v1_0pdf 10

Part 3 – SDP Programmer’s Manual 30 June 2008

Difference between a CDRM and SDP Physical Implementation: Similar to the
relationship between a conceptual and logical model, the physical implementation supports
primary and foreign keys, the procedures that validate these relationships, and specific
formats and syntax related to each data type described in the model. Specifically, these rules
and procedures are defined for a specific database management system such as Oracle 9i, MS
Access 2003, etc.

Difference between a CDRM and SDP XML Schema Implementation: The SDP XML
Schema’s primary purpose is to facilitate the sharing of data across different information
systems, particularly via the Internet. The SDP XML Schema uses the CDRM to describe
schedule and related data concepts and preserve the relationship requirements among data
concepts for one schedule version and for a single transit operator. A set of rules were used
to migrate the data concepts from the CDRM to the XML Schema implementation.

3.3. An Example of Migrating the CDRM to a Logical, Physical and XML
Schema Representation

As described above, there are rules for implementing the CDRM from the conceptual framework
to its logical, physical and XML schema formats. The following sections show how the CDRM
for the same data concept, Schedule Calendar Date, is transformed to a logical, physical, and
XML Schema model. Each model depicted in Figures 1 through 4, is summarized in the list
below:

• Conceptual Data Reference Model—Figure 3
- Note the CDRM, Logical and Physical models are all represented using ERD notation.

• Logical ERD Model—Figure 4 and Figure 5
- Note the key identifiers become primary keys (pk), and related entities include related

or foreign keys (fk);

• Physical Model—Figure 6. Note the attributes are specified with specific data types that
reference the specific database management system specifications.

3.3.1. Example of the Conceptual Data Reference Model
The CDRM is expressed as an Entity Relationship Diagram (ERD). Figure 3 shows an example
for the basic representation of the schedule calendar date concept.

SDPG_Part3_Programmers Guide_v1_0pdf 11

Part 3 – SDP Programmer’s Manual 30 June 2008

Relationship_47

53

4
defines

is defined by

Calendar_Date

date
dayOfWeek
holiday

<pi> <M>
<M>

Route_Depot_Version
(SDP)

routeDepotVersionID
activationDate
deactivationDate

<pi> <M>
<M>
<M>

<<data type>>
Day_Type

(SDP)

dayTypeDescription
agencyID
timeBegin
timeEnd
dayType <pi>

<M>

<M>

Schedule_Calendar_Date
(SDP)

calendarDate
dayType
placementDate
activationDate
deactivationDate

<pi>
<pi>

<M>
<M>
<M>
<M>
<M>

Figure 3: Conceptual ER Model of Schedule Calendar Date Concept

The following paragraph describes the requirements of Figure 3:

“Transit service is scheduled for each day of operation. Service components may be
scheduled to operate on different dates depending on a number of factors. These factors may
be schedule based; for example, special trips are designated when there is an event at Shea
Stadium or service to evacuate workers from the city during a snow storm. The Schedule
Calendar Date associates the relevant schedule components (designated by the Route Depot
Version) and an index related to the appropriate trips (designated by the day type) into a table
which is used as a reference.

“A Schedule Calendar Date is created for each set of schedule version components and the
trips that operate on the specific dayType. In some cases, the schedule version components
are scheduled for only part of a day, for example, the schedule components vary when the
Mets play games that begin at 5 p.m. versus at 7 p.m.” [from SDP Functional Requirements,
p. 102]

3.3.2. Example of the Logical Entity-Relationship Representation
The logical model is driven by application requirements related to how the data are stored and
accessed. In the example illustrated in Figure 4, the Schedule Calendar Date entity inherits
related keys designating the schedule version when more than one schedule version is present.
When an organization changes its schedule mid-version, the entity is required to include a
revision number, and when a transit agency issues their schedule by route or by route and depot,
the route-depot version is also included in the entity. When this model is extended to a regional
repository, each entity must designate the authority that issued the data, as such, the functional
entities Route_Depot_Version, Schedule_Calendar_Date and Day_Type include the agency

SDPG_Part3_Programmers Guide_v1_0pdf 12

Part 3 – SDP Programmer’s Manual 30 June 2008

identifier (agencyID). The actual implementation of the conceptual to logical model may be
seen in Figure 5.

Relationship_47 53

4defines
is defined by

Calendar_Date

date
dayOfWeek
holiday

<pi> <M>
<M>

Route_Depot_Version
(SDP)

routeDepotVersionID
activationDate
deactivationDate

<pi> <M>
<M>
<M>

<<data type>>
Day_Type

(SDP)

dayTypeDescription
timeBegin
timeEnd
dayType <pi>

<M>

<M>

Schedule_Calendar_Date
(SDP)

calendarDate
dayType
placementDate
activationDate
deactivationDate

<pi>
<pi>

<M>
<M>
<M>
<M>
<M>

When storing multiple schedule versions, table
will include foreign keys: scheduleVersionID,
revisionNo and/or routeDepotVersionID, too. Add
foreign key agencyID to all tables when
integrating with multiple agencies.

Use to distinguish different schedule
or route/depot versions. When
multiple agencies and versions are
present, the table will include foreign
keys: scheduleVersionID, revisionNo
and agencyID.

Figure 4: Migrating from Conceptual to Logical Model

SDPG_Part3_Programmers Guide_v1_0pdf 13

Part 3 – SDP Programmer’s Manual 30 June 2008

Figure 5: Logical Model of Schedule Calendar Date Concept

3.3.3. Example of the Physical Database Implementation
The physical model is similar to the logical model except the data types are defined by the
database management system. The physical database also supports procedures that enforce
referential integrity triggers (primary and foreign keys) when data are added, changed or deleted
from the database. A generic physical model for the Schedule Calendar Date concept is
illustrated in Figure 6. As is shown in the figure, this is similar to the logical model shown in
Figure 5 except for defining specific data types and showing the procedures. For organizations
with specific database management systems, the logical and physical representations are
somewhat redundant since logical and physical models will use the same data type definitions.

SDPG_Part3_Programmers Guide_v1_0pdf 14

Part 3 – SDP Programmer’s Manual 30 June 2008

ScheduleVersion

PK scheduleVersionID CHAR(10)

scheduleVersionDescription CHAR(10)
pickNo CHAR(10)
activationDate CHAR(10)
deactivationDate CHAR(10)
placementDate CHAR(10)

ScheduleRevision

PK,FK1 scheduleVersionID CHAR(10)
PK revisionNumber CHAR(10)

activationDate CHAR(10)
deactivationDate CHAR(10)
placementDate CHAR(10)
scheduleVersionType CHAR(10)
history CHAR(10)

RouteDepotVersion

PK,FK1 revisionNumber CHAR(10)
PK,FK1 scheduleVersionID CHAR(10)
PK routeDepotVersion CHAR(10)

routeID CHAR(10)
depotID CHAR(10)
activationDate CHAR(10)
deactivationDate CHAR(10)

CalendarDate

PK date DATETIME

dayOfWeek CHAR(10)
holiday TEXT(10)

Schedule_Calendar_Date

PK,FK1 date DATETIME
PK,FK2 dayType CHAR(10)

placementDate DATETIME
activationDate DATETIME
deactivationDate DATETIME

FK3 revisionNumber CHAR(10)
FK3 scheduleVersionID CHAR(10)
FK3 routeDepotVersion CHAR(10)

Day_Type

PK dayType CHAR(10)

dayTypeDescription TEXT(10)
timeBegin DATETIME
timeEnd DATETIME

Figure 6: Physical Model of the Schedule Calendar Date

SDPG_Part3_Programmers Guide_v1_0pdf 15

Part 3 – SDP Programmer’s Manual 30 June 2008

3.4. Database Scripts and Referential Integrity Issues
Using specialized data modeling software, the CDRM may be used to generate a physical
database loading script. The physical database should be optimized for its use. Because primary
and foreign keys are not specifically identified in the conceptual model, tables are not optimized
for queries, and multiple agencies or versions are not assumed in the CDRM, the script will need
to be revised and augmented. For inquiries on obtaining a script to generate a SDP physical
database, please contact: tsdea@consystec.com.

3.4.1. Referential Integrity Issues
Referential integrity in a database ensures that tables ensures the identity and relationships
among data concepts are unique, consistent and unambiguous. The utility to ensure these
characteristics are the assignment of primary and foreign keys in the physical database
management system. Although the CDRM does not use the terms primary and foreign keys, it
classifies one or more identifying keys (primary keys) for each entity (which becomes a table in
the physical database). The model also inserts related identifying keys in some entities and in
some cases there are non-identifying keys in an entity. The CDRM entity, their identifying keys,
related identifying keys and non-identifying keys are listed in Table 1: CDRM Entity with its
Identifying and Non-Identifying Keys.

Table 1: CDRM Entity with its Identifying and Non-Identifying Keys
IDENTIFYING KEY

NAME
IDENTIFYING
RELATED KEY

NAME(S)

OTHER
RELATED KEYS

ENTITY

agencyID effectiveDate
endDate

Agency

amenityID locationID
effectiveDate
endDate

Amenity

amenityCode Amenity_Type
blockID scheduleVersionID

effectiveDate
endDate

Block

blockTime blockID scheduleVersionID Block_Event_Time
seqNo tripID

routeID
scheduleVersionID Block_Trip_Sequence

date Calendar_Date
connectionID From: locationID

To: locationID
effectiveDate
endDate

Connection_Seg

dayType dateTimeBegin
dateTimeEnd
scheduleVersionID

Day_Type

depotID transitFacilityID Depot

SDPG_Part3_Programmers Guide_v1_0pdf 16

Part 3 – SDP Programmer’s Manual 30 June 2008

IDENTIFYING KEY
NAME

IDENTIFYING
RELATED KEY

NAME(S)

OTHER
RELATED KEYS

ENTITY

locationID
effectiveDate
endDate

connectionNum

To: tripTime,
tripID, routeID
From: tripTime,
tripID, routeID

scheduleVersionID Event_Connection

facPCID transitFacilityID Facility_Plant_Component
locationID featureType_cd

effectiveDate
endDate

Location

mode Mode
noteAssociationID noteID

tripID
tripTime
scheduleVersionID
effectiveDate
endDate

Note_Association

noteID scheduleVersionID
effectiveDate
endDate

Note_Entry

organizationUnitID agencyID
effectiveDate
endDate

Organizational_Unit

passAccessID locationID
effectiveDate
endDate

Passenger_Access_Compone
nt

passengerAccessCod
e

 Passenger_Access_Type

patternID routeID routeDirection
scheduleVersionID
effectiveDate
endDate

Pattern

plantCompID componentID
(amenityID,
transitFacilityID,
stopID, trackID,
passAccesID)
featureType_cd

effectiveDate
endDate

Plant_Component

 trackNo
stopID

 Platform_Track

portalID locationID
effectiveDate
endDate

Portal

SDPG_Part3_Programmers Guide_v1_0pdf 17

Part 3 – SDP Programmer’s Manual 30 June 2008

IDENTIFYING KEY
NAME

IDENTIFYING
RELATED KEY

NAME(S)

OTHER
RELATED KEYS

ENTITY

relativeLocationID locationID Relative_Location
routeID routeBeginDate

routeEndDate
mode
scheduleVersionID
effectiveDate
endDate

Route

routeDepotVersionID revisionNo
scheduleVersionI
D

dayType
effectiveDate
endDate

Route_Depot_Version

routeDirection routeID scheduleVersionID Route_Direction
routeGroupingID scheduleVersionID

effectiveDate
endDate

Route_Grouping

routeGroupingCode Route_Grouping_Type
calendarDate Schedule_Calendar_Date
revisionNumber scheduleVersionI

D
 Schedule_Revision

scheduleVersionID activationDate
deactivationDate

agencyID Schedule_Version

scheduleVersionType Schedule_Version_Type
identifier locationID Service_Area
revisionNo plantCompID activationDate

deactivationDate
placementDate
modificationDate
creationDate

Status

statusTypeCode Status_Code_Type
timepointID locationID

scheduleVersionID
effectiveDate
endDate

Timepoint

tth routeID
routeDirection

scheduleVersionID Timetable_Header

trackNo effectiveDate
endDate

Track

transferClusterName Set of locationID
effectiveDate
endDate

Transfer_Cluster

transitFacilityID locationID
effectiveDate
endDate

Transit_Facility

tranPathID locationID Ordered list of
locationID

Transit_Path

SDPG_Part3_Programmers Guide_v1_0pdf 18

Part 3 – SDP Programmer’s Manual 30 June 2008

IDENTIFYING KEY
NAME

IDENTIFYING
RELATED KEY

NAME(S)

OTHER
RELATED KEYS

ENTITY

effectiveDate
endDate

seqNo locationID
patternID

 Transit_Path_Event

seqNo locationID (first &
last)
patternID

Ordered list of
locationID

Transit_Point_Event

stopID locationID
effectiveDate
endDate

Transit_Stop

tripID routeID
dayType

scheduleVersionID
effectiveDate
endDate

Trip

tripEventTypeCode Trip_Event_Type
tripTime tripID

routeID
scheduleVersionID Trip_Time

3.4.2. Temporal Integrity Issues
Transit schedule and related data are composed of sets of data with differing, overlapping and
temporary data versions and revisions in different states. To that end, temporal data principles
are applied to the major entities using two fields for time: effectiveDate and endDate. The
principles for preserving the history while enabling so-called redundant data to remain in the
database necessitate including the two dates as primary keys. In some cases, like
ScheduleVersion, Route, Day Type, Plant Component Status, additional temporal keys are
included (e.g., activationDate/deactivationDate, routeBeginDate/routeEndDate) in order to allow
for temporary data with similar identifying keys to remain in the

For example, TriMet implemented this approach in their database. The description of their use
of dates is described in a passage from the FTA Best Practices for Using Geographic Data in
Transit: A Location Referencing Guidebook:

“…The Location Table cannot lose the old record keyed to the Location ID; therefore, a
method to manage the updated records must be implemented.

“Adding one attribute to the unique identifier (primary key) of the Location Table, called
location_end_date, can achieve this consistency. When a location ID is first introduced,
the location_begin_date is set to the date of first use (see Example Table #1 below: 5-1-
03 is the new date). The location_end_date is set to a date in the far-off future (in
Example Table #1, location_end_date is 12-31-9999). If a change is made to one of the
Location Table attributes, for example, if the Public_Description is changed, the
location_end_date for the existing row is set to the date of closure (in Example Table #2,
the date is now 6-30-03). In addition, a new row (or record) may be introduced for the

SDPG_Part3_Programmers Guide_v1_0pdf 19

Part 3 – SDP Programmer’s Manual 30 June 2008

Location ID. On the new record, the location_begin_date value is set for the original
location_end_date plus one day later (7-01-03, and the location_end_date is set to a date
in the far-off future (12-31-9999). Using this approach, a consistent set of values is
provided for the Location ID with the referring transit feature matching the Location ID,
and inclusive of location_begin_date and location_end_date.

“Example of the Public_Description changing:

Example Table #1
Loc_ID location_begin_date location_end_date Public_Description
5 5-1-03 12-31-9999 Union & 5th

Example Table #2
Loc_ID location_begin_date location_end_date Public_Description
5 5-1-03 6-30-03 Union & 5th
5 7-1-03 12-31-9999 MLK& 5th

“In this manner, historical data can be matched accurately. Alternatively, if the location
changes (e.g., nearside to farside), a new ID (and new record) is created and the old ID is
retired.”
[from FTA-NJ-26-7044-2003.1, Best Practices for Using Geographic Data in Transit: A
Location Referencing Guidebook , April 2005. pf., 79. free download from
http://www.fta.dot.gov/documents/LRG_FinalPublication.pdf]

Many of the principles for managing temporal databases may be found in:

Richard T. Snodgrass, Developing Time-Oriented Database Applications in SQL. Morgan
Kaufmann Publishers, San Francisco CA, 2000. – free download at
http://www.cs.arizona.edu/people/rts/tdbbook.pdf

3.5. Implementation of a SDP Database in MS Access

The SDP demonstration contains a sample Microsoft Access database instance of the SDP
(Sample SDP database). The referential integrity procedures and triggers are not installed in this
database. The database executes a macro at startup that reads a set of SDP csv file format files at
run-time and loads the data into the database. The user may then view table data and create new
queries to examine the SDP data and structure.

3.5.1. Software Installation
The Sample SDP database contains a startup macro application written in Visual Basic for
Access that runs under the Windows Operating System. Table 2 outlines the operating system
and version requirements for the database instance example.

SDPG_Part3_Programmers Guide_v1_0pdf 20

http://www.fta.dot.gov/documents/LRG_FinalPublication.pdf
http://www.fta.dot.gov/documents/LRG_FinalPublication.pdf
http://www.cs.arizona.edu/people/rts/tdbbook.pdf

Part 3 – SDP Programmer’s Manual 30 June 2008

Table 2: SDP Access Database Operating System and Version Requirements
System Version

SDP XML Schema Version 1_0
Microsoft Access 2003 SP2
MS Windows Windows XP

Prerequisites: Microsoft Windows and Access 2003 Database.

The TSDEA web site (http://www.consystec.com/tsdea/rstwg/docs.html) contains a copy of the
Microsoft Access 2003 database content file, but not the database software itself.

3.5.2. Data Files

3.5.2.1. Set Up the SDP Directory Structure
The figure below shows where to install the SDP instance database, called sdp_db.mdb. You
may choose any SDP root path (directory). We have labeled this SDP root as $SDP in the figure
below and use this label in the remainder the user’s manual.

If you are copying files from the CD, the directory structure is set up as described in Figure 7.

SDP Database Application Example Directory Structure

$SDP

SDP CSV files

$SDP is a directory of your choosing.

Application
Software
Module

Application Input Files

SDP_data

RTIF STIF MNR LIRR MTABus CoachUSALIBussdp_db.mdb

Figure 7: SDP Database Application Directory Structure

The Sample SDP Database Instance is located in the SDP_data sub-directory of the $SDP
directory. We will use a forward-slash notation to indicate sub-directory relationships of
directory tree, for example, $SDP/SDP_processing.

SDP CSV data files, which can be imported to the database at run-time are located in an agency-
specific directory of $SDP/SDP_data/, for example, $SDP/SDP_data/LIBus for Long Island Bus,
and $SDP/SDP_data/RTIF for New York City Transit Rail files.

3.5.2.2. List of SDP CSV Data Input Files
The Sample SDP database reads CSV data from an agency-specific sub-directory of
$SDP/SDP_data/”agency”. The list of files read depends on the agency and whether the agency

SDPG_Part3_Programmers Guide_v1_0pdf 21

Part 3 – SDP Programmer’s Manual 30 June 2008

provides bus, commuter rail, or subway, etc. service. The list of files, using the LIBus as an
example, is listed below:

• sdp_agency.csv
• sdp_direction.csv
• sdp_location.csv
• sdp_Note.csv
• sdp_NoteTimeAssoc.csv
• sdp_NoteTripAssoc.csv
• sdp_pattern.csv
• sdp_patternEventList.csv
• sdp_relativeLocation.csv
• sdp_route.csv
• sdp_rtDepotVersion.csv
• sdp_RtDirection.csv
• sdp_scheduleRevision.csv
• sdp_scheduleVersion.csv
• sdp_stop.csv
• sdp_TimeEventType.csv
• sdp_timepoint.csv
• sdp_trips.csv
• sdp_tripTimes.csv

3.5.2.3. List of SDP Tables
The output of the initialization macro is a series of tables with the same names as the csv files
imported.

3.5.3. Application Execution
AutoExec Macro Application Execution:

• AutoExec Macro: At startup the sdp_db.mdb database executes a software module that
prompts the user for a name of a sub-directory where SDP csv files are located: for
example, libus, rtif, stif, mnr, lirr, mtabus, etc.

An example of the prompt display is shown in Figure 8:

Figure 8: SDP Startup Macro Initialization Directory Prompt

Once the data files are loaded the application will display “Done!”.

SDPG_Part3_Programmers Guide_v1_0pdf 22

Part 3 – SDP Programmer’s Manual 30 June 2008

SDPG_Part3_Programmers Guide_v1_0pdf 23

To launch the MS Access database, navigate to the $SDP/SDP_data directory. If you are using a
graphical interface to navigate to the $SDP/SDP_data directory, then double-click on the file
called sdp_db.mdb to start the application.

After startup MS Access will contain a list of tables that correspond with the csv files imported.
This is shown in Figure 9:

Figure 9: SDP Startup Macro Initialization Directory Results

Part 3 – SDP Programmer’s Guide 30 June 2008

4. Using the SDP XML Schema for XML Document Validation

4.1. Introduction
The Transit Schedule Data Exchange Architecture (TSDEA) project describes the exchange
requirements for schedule and related data. These data requirements are incorporated into
Schedule Data Profile (SDP) reference data model and implemented into the SDP XML Schema.

This tutorial provides a brief overview of SDP XML Schema elements, and then describes two
applications that use the SDP XML Schema to validate XML documents. A thorough treatment
of the XML schema implementation and conceptual data reference model is contained in Chapter
2 of SDP Guidance Documentation Part 2: User Requirements.

One of the advantages of XML is the relative ease of verification of conformance with an XML
schema specification. Furthermore, software tools that are easy to use are readily available.
Two applications that validate XML documents are discussed in this chapter. Finally, XML,
which is written in ASCII, is portable across system platforms.

One disadvantage of using XML documents is the relative large size of the document, routinely
ranging between 5 to 15 megabytes in size, based on a representative sample of SDP XML
documents.

References:

SDP Guidance Documentation Part 2: User Requirements Version 1.0, June 2008

The intended audience f this manual includes:
• System developers and data modelers interested in creating valid SDP XML data; and
• System managers responsible for setting up the run-time environment for SDP

applications

4.2. Structure of the SDP XML Schema
The SDP XML Schema is comprised of four files. These are listed below:

• SDP_XML_Schema_v1_0.xsd: This is the base schema, which imports the
SDP_Common and SDP_Domain schemas. It defines the structure of the SDP at the
highest level. The SDP100 root element contains the following:

o AgencyRegistration
o Service
o TransitNetwork
o TransitGazatteer
o TransitFacilities

• SDP_common_v1_0.xsd – Include a definition of complex elements included by the
highest level elements of the SDP.

• SDP_domain_v1_0.xsd – Includes a definition of identifiers and code enumerations used
in the SDP.

SDPG_Part3_Programmers Guide_v1_0pdf 24

Part 3 – SDP Programmer’s Guide 30 June 2008

• GML_geometry.xsd - Contains definitions of the Geography Markup Language (GML)
used in the SDP.

4.3. Structure of the Schedule Calendar Date (SCD) XML Schema
A second schema that is part of the demonstration project is the Schedule Calendar Date schema,
which is made up of two files. These are listed below:

• SDP_Schedule_Calendar_Date_v1.xsd: This is the base schema, which imports the
SDP_domain_scd schema. It defines the structure of the Calendar and
Schedule_Calendar_Date. The Calenday root is comprised of Schedule_Calendar_date
elements.

• SDP_domain_scd_V1_0.xsd – Includes a definition of identifiers and code enumerations
used in the SCD.

4.4. Elements of the XML Schema
The SDP Reference Data Model is an implementation neutral representation of the static design
that fulfills the SDP user requirements. The SDP data model describes the static data structure
(data relationships and valid value rules) for the information used in SDP applications. The SDP
data model specifies the following:

• Sequence and order of data
• Multiplicity, or number of times, a data element can be represented
• Defines re-usable types (for example, longitude and latitude are used together, so a re-

usable point type may be defined)
• Specifies mandatory (1 of more required) and optional (0 or more required) data elements
• Specifies data value ranges and other constraints (for example, only the floating point

numbers -90.000000 through 90.000000 may be used to define a latitude value, only the
following valid text codes may be used to describe a dayType: “weekday”, “mon”, “tue”,
…).

• Key References

4.5. Validating XML Documents Using the XML Schema
The SDP demonstration project used the Altova XMLSpy software and a Microsoft Windows
Scripting Host application developed as part of the demonstration project to validate both the
XML schemas and XML documents. How to use these two applications to validate XML
documents are the topics of Section 4.6 and Section 4.7 below.

4.6. Using Altova XMLSpy
Figure 10 on the following page shows XMLSpy after startup of the sdp.spp, an XMLSpy
project file. The XMLSpy project file contains a list of schema files and XML documents. A
portion of the sdp_MNR_Base_April2008.xml file is shown in the center.
At the bottom of the figure, and part of the XMLSpy application, is a panel containing a
Validation Report that indicates that the sdp_MNR_Base_April2008.xml document is valid.
This means that the XML document conforms to all the schema rules including:

• Sequence and order of elements
• All mandatory elements present
• All data content within the value constraints

SDPG_Part3_Programmers Guide_v1_0pdf 25

Part 3 – SDP Programmer’s Guide 30 June 2008

SDPG_Part3_Programmers Guide_v1_0pdf 26

If we change one of the data values to an incorrect value, for example the effectiveDate attribute
of the <Agency> element to 2008-13-01, and run the validation, the XMLSpy application will
provide a description of the error in the Validation Report panel at bottom, highlight the location
of the error in the document, and print the xPath location of the error found. This is shown in
Figure 11.

Part 3 – SDP Programmer’s Guide 30 June 2008

SDPG_Part3_Programmers Guide_v1_0pdf 27

Validate
Document Button

XML
Documents

XML
Schema

Validation
Report

Figure 10: XMLSpy SDP Project File at Startup

Part 3 – SDP Programmer’s Guide 30 June 2008

SDPG_Part3_Programmers Guide_v1_0pdf 28

Figure 11: XMLSpy Showing Validation Errors

Validation
Error Report

Part 3 – SDP Programmer’s Guide 30 June 2008

4.7. Microsoft MSXML2 Windows Scripting Host Application

4.7.1. Software Installation
A sample application, msxsd, based on the MSXML2, an XML processor dynamic link library
(DLL) that comes with the Microsoft Internet Explorer application is included on the application
CD. The msxsd is a javascript application what accesses the MSXML2 DLL to validate an XML
document against an XML Schema. The table below outlines the operating system and version
requirements for the database instance example.

System Version
SDP XML Schema Version 1_0
Windows Scripting
Host

5.6

Microsoft XML DLL 2
MS Windows Windows XP

Prerequisites: Microsoft Windows Scripting Host.

The attached CD contains a copy of the javascript, but not the Windows Scripting Host software
nor the MSXML2 DLL.

Appendix A of this chapter contains a copy of the javascript source and batch file to execute the
code under the Windows Scripting Host.

4.7.2. Application Execution
To start the msxsd application, navigate to the $SDP/SDP_schemaValidation/MNR directory.
Then, double-click on the file called validate_MNR_SdpXml.bat to start the application.

If the file is valid, then the following prompt will display (see Figure 12):

Figure 12: MSXSD Application Showing a Validation Report

An example showing an error report message is in Figure 13:

SDPG_Part3_Programmers Guide_v1_0pdf 29

Part 3 – SDP Programmer’s Guide 30 June 2008

Figure 13: MSXSD Application Showing Validation Error Report

SDPG_Part3_Programmers Guide_v1_0pdf 30

Part 3 – SDP Programmer’s Guide 30 June 2008

SDPG_Part3_Programmers Guide_v1_0pdf 31

5. Appendix A: MSXSD.JS Source and Batch Files
File: msxsd.js

Validate XML Document Against Schema

// validate parameters
if(WScript.Arguments.length != 3) {
 WScript.Echo("msxsd takes three arguments - datafile, namespace, schema - eg:");
 WScript.Echo('msxsd books.xml "" books.xsd');
} else {
 var cache = new ActiveXObject("Msxml2.XMLSchemaCache.4.0");
 cache.add(WScript.Arguments(1), WScript.Arguments(2));

 var xmldoc = new ActiveXObject("Msxml2.DOMDocument.4.0");
 xmldoc.async = false;
 xmldoc.preserveWhiteSpace = true;
 xmldoc.schemas = cache;
 xmldoc.load(WScript.Arguments(0));

 if(xmldoc.parseError.errorCode != 0)
 WScript.Echo("There is a problem: " + xmldoc.parseError.errorCode + " " +
xmldoc.parseError.reason);
 else
 WScript.Echo("no problems!");
}

File: validate_MNR_SdpXml.bat

msxsd SDP_MNR_Base_April2008.xml "http://www.tsdea.com/schema/SDP100"
../schema/SDP_XML_Schema_v1_0.xsd

Part 3 – SDP Programmer’s Guide 30 June 2008

6. Application Design Reference Manuals

6.1. Introduction
The Transit Schedule Data Exchange Architecture (TSDEA) project describes the exchange
requirements for schedule and related data. These data requirements are incorporated into
Schedule Data Profile (SDP) reference data model and implemented into the SDP XML Schema
Version 1_0 (posted May 23, 2008).

This SDP Application Design Reference Manual describes the design elements and application
development environment of SDP applications developed under the TSDEA demonstration
project. The appendices describe the design details of the application software.

The SDP Applications developed under this project fall into one of three categories:

1. Applications that convert from an agency’s native schedule data to an SDP format
2. Applications that convert between the two SDP file formats, XML and CSV
3. Applications that convert from the SDP CSV format to formats used by open-source third

party initiatives

The SDP Applications described in this design document are listed in Table 3: SDP Application
List.

Table 3: SDP Application List
Native Data to SDP
LIBus2Sdp – Converts Long Island Bus Native Data Files to SDP
RTIF2Sdp – Converts New York City Transit RTIF Files to SDP
STIF2Sdp – Converts New York City Transit STIF Files to SDP

SDP CSV Format to XML and SDP XML Format to CSV
Csv2Xml – Converts SDP CSV Files to XML
Xml2Csv – Converts SDP XML Files to CSV

SDP CSV Format to Third Party Open Source Initiatives
Csv2Gtfs – Converts SDP CSV Files to Google Transit Feed Spec (GTFS)

6.1.1. Intended Audience
The intended audience of this manual includes:

• System developers interested in maintaining the existing SDP applications or creating
new SDP applications

• System managers responsible for setting up the run-time environment for SDP
applications

SDPG_Part3_Programmers Guide_v1_0pdf 32

Part 3 – SDP Programmer’s Guide 30 June 2008

SDPG_Part3_Programmers Guide_v1_0pdf 33

6.1.2. SDP Application User’s Manuals
SDP Application User’s Manuals (each developed as a separate document) have been written for
a user interested in understanding how to use an SDP application, without the need to understand
the details of the processing involved. These are listed below:

• SDP Application: LIBus2Sdp Conversion Setup and User’s Manual
• SDP Application: RTIF2Sdp Conversion Setup and User’s Manual
• SDP Application: STIF2Sdp Conversion Setup and User’s Manual
• SDP Application: SDP Csv2Xml Conversion Setup and User’s Manual
• SDP Application: SDP Xml2Csv Conversion Setup and User’s Manual
• SDP Application: SDP Csv2Gtfs Conversion Setup and User’s Manual

6.2. SDP Application System Architecture
The SDP Application System Architecture, shown in Figure 14, describes the relationship of
SDP applications and system interfaces (inputs and outputs).

Part 3 – SDP Programmer’s Guide 30 June 2008

Figure 14: Schedule Data Processing Data Flow Diagram

SDPG_Part3_Programmers Guide_v1_0pdf 34

Part 3 – SDP Programmer’s Guide 30 June 2008

6.3. SDP Application Module Descriptions
Each SDP application is comprised of one or more software modules. A software module, as
used here, is a single file containing software code. This design document contains a complete
description of the software modules used by all the SDP applications. A module is described
completely by the following:

• Module Name - The software module name.
• Module Descriptions – A high-level description of the module’s processing and

functions.
• Inputs – The names of the files opened for the purposes of reading by the module.
• Outputs – The names of the files opened for the purposes of writing by the module.
• Startup Parameters – List of any parameters that may be passed into the file at startup, for

example, command-line arguments.
• Programming Language and Version – The programming language and version of the

module.
The Application User’s Modules contain a description of each software module.

6.4. Application Development Environment

6.4.1. Open Source – Open Platform
The TSDEA is an open source, open platform project. All the software developed under the
project is subject to an adapted Berkeley Open Source license.

6.4.2. Operating Systems
The SDP demonstration is an open platform project. SDP applications were developed and
tested under the Microsoft WindowsXP operating system. Several applications, early during
development, were tested under the Linux operating as a proof-of-concept of the open platform
philosophy.

6.4.3. Data Encoding Formats
All data processed by the SDP applications is ASCII text data. No binary formats are specified
and therefore files are cross-platform. The following summarized the data encoding formats of
file content of the SDP applications:

• Native Data Formats. The TSDEA SDP demonstration processes native ASCII format
files for Long Island Bus and New York City Transit RTIF and STIF.

• CSV – Comma-Separated Values (a.k.a. Comma-Separated Variables) is a standardized
ASCII format for describing tabular information. CSV files optionally contain a header
record listing column names following by rows containing values corresponding with the
column names.

• XML – eXtensible Markup Language uses a tag based notation for representing
hierarchically organized (i.e., tree structure) data.

SDPG_Part3_Programmers Guide_v1_0pdf 35

Part 3 – SDP Programmer’s Guide 30 June 2008

6.4.4. Databases
No databases were used during this demonstration phase of the project.

6.4.5. Programming Languages
The programming languages used in the TSDEA SDP demonstration are summarized below:

• PHP – Pre Hypertext Processing. PHP is a C-like scripting language with support for
Web processing. PHP is open-source and runs under a variety of operating systems.
PHP is implemented under the Apache, Microsoft IIS, and other web servers.

• VBScript. A Microsoft Windows Scripting Host language. It is used to process XML
formatted information into CSV (xml2csv SDP application).

• Jscript. A Microsoft Windows Scripting Host language. It is used to validate XML
documents against the SDP XML schema.

• Command-line Processing. PHP supports command-line operation of PHP scripts. This
feature is utilized under WindowsXP.

6.4.6. Directory Structure
Figure 15 shows the directory tree hierarchy for location of data content, SDP application
software, and documentation.

SDP Directory Structure
(*Including Future)

LIBus

RTIF

STIF

$SDP $SDP is a directory of your choosing.

LIB_processing

RTIF_processing

STIF_processing

SDP_processing

SDP_xml2csv

Native_data

SDP_data
LIBus

RTIF

STIF

MNR

LIRR

CoachUSA

MTABus

docs

CSVFormat

schema

GTFS_data

MNR

LIRR

MTABus

CoachUSA

Figure 15: SDP Directory Structure Hierarchy

The $SDP directory at the top of the tree in figure is a directory of an implementation’s
choosing. Several sub-directories are branches off the top node (or root node).

SDPG_Part3_Programmers Guide_v1_0pdf 36

Part 3 – SDP Programmer’s Guide 30 June 2008

6.4.6.1. Native Data Processing and Data
There are directories for the applications that process native data – LIB_processing,
RTIF_porcessing, and STIF_processing. Below these directories that contain native data
processing applications is a directory, called Native_data, that contains sub-directories for each
an agency’s native format data. To date, Native_data directory contains the native data files for
Long Island Bus, and the RTIF and STIF files of New York City Transit.
The LIB_processing, RTIF_processing, and STIF_processing directories contain applications
that convert the individual agency data from there native formats to the SDP CSV format. The
CSV files are written to a specific sub-directory of SDP_data, one for each agency (native data
source).

6.4.6.2. SDP Data Processing and Data
The SDP_processing sub-directory contains the applications that quality check and convert the
CSV outputs of the native data processing to SDP format files. This includes applications that
convert SDP CSV to XML and SDP CSV to the Google Transit Feed Spec format.

The SDP_xml2csv sub-directory contains the applications necessary to perform an XML schema
validation of agency-specific XML documents.

6.5. Appendix A: LIBus2Sdp Conversion Setup and User’s Manual
This manual contains guidance on the application LIBus2SDP Conversion of Long Island Bus
Native Data Files to SDP.

See http://www.consystec.com/tsdea/rstwg/docs.html to download the User Manual. See
http://www.consystec.com/tsdea/rstwg/applications.html to download the application code and
user manual.

6.6. Appendix B: RTIF2Sdp Conversion Setup and User’s Manual
This manual contains guidance on the application RTIF2SDP Conversion of New York City
Transit Rail Transit Interface Format Native Data Files to SDP.

See http://www.consystec.com/tsdea/rstwg/docs.html to download the User Manual. See
http://www.consystec.com/tsdea/rstwg/applications.html to download the application code and
user manual.

6.7. Appendix C: STIF2Sdp Conversion Setup and User’s Manual
This manual contains guidance on the application STIF2SDP Conversion of New York City
Transit Surface Transit Interface Format Native Data Files to SDP.

See http://www.consystec.com/tsdea/rstwg/docs.html to download the User Manual. See
http://www.consystec.com/tsdea/rstwg/applications.html to download the application code and
user manual.

SDPG_Part3_Programmers Guide_v1_0pdf 37

http://www.consystec.com/tsdea/rstwg/docs.html
http://www.consystec.com/tsdea/rstwg/applications.html
http://www.consystec.com/tsdea/rstwg/docs.html
http://www.consystec.com/tsdea/rstwg/applications.html
http://www.consystec.com/tsdea/rstwg/docs.html
http://www.consystec.com/tsdea/rstwg/applications.html

Part 3 – SDP Programmer’s Guide 30 June 2008

SDPG_Part3_Programmers Guide_v1_0pdf 38

6.8. Appendix D: SDP Csv2Xml Conversion Setup and User’s Manual
This manual contains guidance on the application Csv2SDP which converts SDP CSV Files to a
SDP XML Document.

See http://www.consystec.com/tsdea/rstwg/docs.html to download the User Manual. See
http://www.consystec.com/tsdea/rstwg/applications.html to download the application code and
user manual.

6.9. Appendix E: SDP Xml2Csv Conversion Setup and User’s Manual
This manual contains guidance on the application XML2CSV which converts a SDP XML
Document format to SDP Comma Separated Value (CSV) files.

See http://www.consystec.com/tsdea/rstwg/docs.html to download the User Manual. See
http://www.consystec.com/tsdea/rstwg/applications.html to download the application code and
user manual.

6.10. Appendix F: SDP Csv2Gtfs Conversion Setup and User’s Manual
This manual contains guidance on the application Csv2GTFS which converts SDP CSV Files to
the Google Transit Feed Specification (GTFS) files. The application uses the GTFS February
2008 version.

See http://www.consystec.com/tsdea/rstwg/docs.html to download the User Manual. See
http://www.consystec.com/tsdea/rstwg/applications.html to download the application code and
user manual.

http://www.consystec.com/tsdea/rstwg/docs.html
http://www.consystec.com/tsdea/rstwg/applications.html
http://www.consystec.com/tsdea/rstwg/docs.html
http://www.consystec.com/tsdea/rstwg/applications.html
http://www.consystec.com/tsdea/rstwg/docs.html
http://www.consystec.com/tsdea/rstwg/applications.html

Part 3 – SDP Programmer’s Manual 30 June 2008

7. The SDP and Metadata

7.1. Introduction
This chapter introduces the metadata for the Schedule Data Profile. Metadata is used to describe
one or more SDP Documents that form the collection of a schedule version (including all
revisions and route depot versions) or schedule version revision.

7.2. What is SDP Metadata?
Metadata is often defined as “data about data”. It summarizes the “who, what, when, where,
why and how” of the data set. Metadata helps people find data that is appropriate for their use.
SDP metadata will help1:

• preserve the data history so that it can be re-used or adapted,
• assess the age and character of your data set
• provide a place for agencies to document extensions to their data sets for internal or

special projects and applications
• instill data accountability by requiring you to state what you know about the data and

realizing what you don’t, but should, know about your data
• limit data liability by explicitly designating the effective and administrative limits of use

of the data.
• monitor data development by regular review of the process steps completed and recorded

within the metadata
• access the lineage and content of the data production process

In theory, metadata is a “best practice”. In practice, metadata is time consuming and tedious.
The geospatial industry has learned over the years that metadata is an important tool in order to
effectively manage and re-use data resources. To this end, an SDP Document submitted for use
should be accompanied by a metadata document. A data repository that stores a SDP Document
should use the metadata document enable Data Consumers to discover the data resources
available at the site. To aid in the collection of metadata, the data repository, when it registers
the SDP Document, should support the documentation and importation of metadata components
of the SDP Document submissions.

7.3. Why SDP Metadata
The TSDEA Data Repository will serve as a portal in which consumers of schedule data may
find resources submitted by downstate NY regional Operators. This portal environment requires
a “registry” of information about the quality, fitness for use, dissemination policies and
interfaces supported by each data set organization. In theory, the TSDEA will support multiple
transit agency schedules; it may support several schedule versions and revisions for a single
transit operator. Managing these data sets will provide information on the SDP Document
submission’s identity, status, extensions, customizations, data quality and other information
needed to describe the purpose, fitness for use and distribution policies. Management will be

1 List adapted from “Why bother with Metadata”, http://www.fgdc.gov/metadata/metadata-business-case

SDPG_Part3_Programmers Guide_v1_0pdf 39

Part 3 – SDP Programmer’s Manual 30 June 2008

accomplished through a SDP Metadata XML Schema submission and metadata application
programming interface (API).

7.4. SDP Metadata XML Schema

7.4.1. Overview
The SDP Metadata XML Schema is composed of several “packages”. These packages are based
on best practices identified by several metadata standards including

• ASTM E2468-05 - Standard Practice for Metadata to Support Archived Data
Management Systems

• IEEE 1489/1488 ITS Data Dictionary and Message Set
• FGDC Content Standard for Digital Geospatial Metadata
• ISO 11179 – Metadata Registries

The ASTM references seven categories of information that should be included in a metadata.
They include:

1. Identification Information
2. Data Quality Information
3. Spatial Data Organization Information
4. Spatial Reference Information
5. Entity and Attribute Information
6. Distribution Information
7. Reference Information

Many of the elements from the ASTM reference are incorporated in the requirement description
for the SDP Metadata.

7.4.2. SDP Metadata Requirements
This section describes the requirements that drive the SDP Metadata XML Schema. The needs
are listed in Table 4.

Table 4: Requirement Description for SDP Metadata
Category Requirements
1 Identification

Information
• SDP shall contain identification information about the

submission and standards used to define an operator’s set of
Schedule and Related Data. The information should include:
o Originator/submitter (name, telephone and email)
o Original registration date
o Approval staff person (name, signature, date)
o Publication date
o List of SDP Files covered by this metadata (only one

Schedule Version per metadata)
o SDP Schema version used to produce SDP files
o SDP Metadata Schema version

SDPG_Part3_Programmers Guide_v1_0pdf 40

Part 3 – SDP Programmer’s Manual 30 June 2008

Category Requirements
o Online linkages (e.g., maps, pdf timetables)

2 Description and
Time Period of
Content

• Abstract (general description of SDP files)
• Schedule Version

o revision
• Activation date / deactivation date (or 12-12-9999)
• Data sources (e.g., Scheduling Application, RTIF, including

version numbers of applications or file descriptions)
3 Status • Phase: registered, Levels 1-3

• Date entered phase
• Estimated date for next schedule version update
• Update frequency: schedule change frequency (biweekly,

quarterly, semi-annually)
• Processing and Change Logs

o Tests conducted
• Type, who, what, why, activation date,

disposition of updated record(s),
o Revision History

• Lineage (actual processes used to convert data)
o Transformation processes needed to convert data
o Date recorded
o change start date, change stop date

4 Schedule Calendar • Calendar
• List of holidays and special days
• Schedule Calendar Days

5 Data Quality
Information

• Procedures (instructions)
o Process of loading data set(s)
o Transformations required to pass testing (levels 1-3)

• List of Exceptions or Constraints
o Exception descriptions
o Date recorded

6 Special Conventions • Schedule day (based on up to a 36 hours clock which may
include a start time from the day before and end at a time the
next day)

• Naming convention for indexes (may be included in XML
schema annotation)

7 Code Set Extensions • Based on codes supported by SDP XML Schema.
8 Spatial Dataset • Description of each location reference with respect to its

measurement quality and datum or coordinate system (e.g.,
GPS, map coordinates using SP-NY), e.g., x-coordinate/y-
coordinate pair is New York State Plane. Accuracy of
measurement or map base may include its own metadata.
o For example, the New York State Plane may reference the

State GIS metadata link:
http://www.nysgis.state.ny.us/gisdata/metadata/nysogs.sta

SDPG_Part3_Programmers Guide_v1_0pdf 41

http://www.nysgis.state.ny.us/gisdata/metadata/nysogs.statepln.html

Part 3 – SDP Programmer’s Manual 30 June 2008

Category Requirements
tepln.html

o Default is NAD ’83 and UTM 18
o Default spherical coordinates units is decimal degrees with

6 decimal places
• Linear reference units (e.g., feet, meters, decimeters; include

precision, resolution and accuracy for measurement)
o Default is feet

9 Distribution
Information

• List of available interfaces
• Contact Information

o Name, telephone, email, URL

When the TSDEA provides a capability to document and store the metadata, many of the
requirements may be automatically or manually entered into a metadata document. The schedule
calendar requirement was separated from the metadata and will be submitted as a separate
document. Guidance information on the schedule calendar XML schema may be found in the
SDP Guidance Part 2, Chapter 9.

7.4.3. Metadata XML Schema Model
The Metadata XML Schema is described in this section. The high level SDP Metadata schema is
depicted in Figure 16: High Level SDP Metadata XML Schema. The depiction includes the
categories described in the Requirements Description. Each node of the schema includes the
details related to the required information.

SDPG_Part3_Programmers Guide_v1_0pdf 42

Part 3 – SDP Programmer’s Manual 30 June 2008

Metadata

Identification
(1)

Description

The conventions used to depict the
XML Schema requirements are as
follows:

Each node branching from the root
node (Metadata) has exactly one (1),
one-to-many (1..*), or zero-to-many
(0..*) number of records included in
the node. This notation is only
depicted in the top level schema
model (Figure 1).

Bolded attributes, elements and
nodes are mandatory, that is at least
one value must be included in the
element or record.

Note: the use of italics in this
convention list refers to terms used
by the XML Schema or XML
standards.

(1)

Status
(1)

DataQuality

DistributionInformation
(1)

(1..*)

CodeSet

SpatialDataset
(1)

(0..*)

SDPG_Part3_Programmers Guide_v1_0pdf 43

Figure 16: High Level SDP Metadata XML Schema

SpecialConventions
(0..*)

Using the XMLSpy software (see Appendix A for description of the notation), the high level
SDP Metadata XML Schema is depicted in Figure 17. The Metadata document attribute group is
depicted in Figure 18. Figures 19-26 describe the high level elements in the schema. The
schema is composed of three files, similar to the SDP XML Schema. The files include:

 Main Schema Document: SDP_Metadata_XML_Schema_V0.1.xsd
 Complex Type Descriptions: SDPM_common_V0.1.xsd
 Simple Type Descriptions: SDPM_domain_V0.1.xsd

These documents may be found on http://www.consystec.com/tsdea/rstwg/docs.html.

Although, a white paper describing the requirements was circulated during the TSDEA Project,
the schema and requirements have not yet been implemented.

Part 3 – SDP Programmer’s Manual 30 June 2008

Figure 17: Metadata SDP XML Schema Model (from XMLSpy)

SDPG_Part3_Programmers Guide_v1_0pdf 44

Part 3 – SDP Programmer’s Manual 30 June 2008

Figure 18: SDP Metadata Attribute Group

SDPG_Part3_Programmers Guide_v1_0pdf 45

Part 3 – SDP Programmer’s Manual 30 June 2008

Figure 19: SDP Metadata XML Schema Fragment of Identification Element

SDPG_Part3_Programmers Guide_v1_0pdf 46

Part 3 – SDP Programmer’s Manual 30 June 2008

Figure 20: SDP Metadata XML Schema Fragment of Description Element

SDPG_Part3_Programmers Guide_v1_0pdf 47

Part 3 – SDP Programmer’s Manual 30 June 2008

Figure 21: SDP Metadata XML Schema Fragment of Status Element

SDPG_Part3_Programmers Guide_v1_0pdf 48

Part 3 – SDP Programmer’s Manual 30 June 2008

Figure 22: SDP Metadata XML Schema Fragment of Distribution Information Element

Figure 23: SDP Metadata XML Schema Fragment of Data Quality Element

SDPG_Part3_Programmers Guide_v1_0pdf 49

Part 3 – SDP Programmer’s Manual 30 June 2008

Figure 24: SDP Metadata XML Schema Fragment of Spatial Data Element

Figure 25: SDP Metadata XML Schema Fragment of Code Set Element

SDPG_Part3_Programmers Guide_v1_0pdf 50

Part 3 – SDP Programmer’s Manual 30 June 2008

SDPG_Part3_Programmers Guide_v1_0pdf 51

Figure 26: SDP Metadata XML Schema Fragment of Special Conventions Element

Part 3 – SDP Programmer’s Manual 30 June 2008

7.5. Appendix A: XMLSpy Schema Notation
The XML Schema notation, as extracted from the XMLSpy application, is used to describe the
organization and format of the SDP XML Schema. The Schema is based on a hierarchical
organization where parent nodes or elements may contain child elements (which may in turn be a
parent element to child elements). The XML Schema format and document instance are based
on the standard notation of an XML Schema and instance document.

Figure 27 below illustrates the different levels of the XML Schema and key notation, using
Transit Facility as the example. In addition, the figure shows the type description for each
element. A type reference may have one of the following prefixes or suffixes:

• Prefix of “xsd” asserts the type is native to the XML standard
• Suffix of “_id” implies the type is defined as an SDP identifier domain
• Suffix of “_cd” implies an enumerated code type.

A “Structure” in the type name implies that the element is a complex type. An element also
includes the constraint on the number of times it is allowed. An element enclosed by a dotted
lined box indicates that the element is optional. Elements that may be repeated will include a
notation of the minimum and maximum (e.g., 0..∞) under the right hand corner of the element
enclosure. “plantComponentList” is an example of an element that is optional, but may be
repeated. One element is required when the element is enclosed with a solid line (and does not
contain a min-max value).

SDPG_Part3_Programmers Guide_v1_0pdf 52

Part 3 – SDP Programmer’s Manual 30 June 2008

SDPG_Part3_Programmers Guide_v1_0pdf 53

Figure 27: Example of the XMLSpy Diagram Notation

	1. Overview
	1.1. Purpose of Document
	1.2. Document Structure and Objectives
	1.3. Programmer’s Guide Organization

	2. A Guide to Translating Native Data to SDP
	2.1. Templates, Quick Start and User Requirements Guidance
	2.2. A Simple Process for Translating Native to SDP
	2.3. Using the SDP Template Spreadsheet

	3. Guidance on Building a Physical Database from the SDP
	3.1. Conceptual Data Reference Model as a Framework for Implementation Methods
	3.2. Differences between the SDP CDRM and Implementation Methods
	3.3. An Example of Migrating the CDRM to a Logical, Physical and XML Schema Representation
	3.3.1. Example of the Conceptual Data Reference Model
	3.3.2. Example of the Logical Entity-Relationship Representation
	3.3.3. Example of the Physical Database Implementation

	3.4. Database Scripts and Referential Integrity Issues
	3.4.1. Referential Integrity Issues
	3.4.2. Temporal Integrity Issues

	3.5. Implementation of a SDP Database in MS Access
	3.5.1. Software Installation
	3.5.2. Data Files
	3.5.2.1. Set Up the SDP Directory Structure
	3.5.2.2. List of SDP CSV Data Input Files
	3.5.2.3. List of SDP Tables

	3.5.3. Application Execution

	4. Using the SDP XML Schema for XML Document Validation
	4.1. Introduction
	4.2. Structure of the SDP XML Schema
	4.3. Structure of the Schedule Calendar Date (SCD) XML Schema
	4.4. Elements of the XML Schema
	4.5. Validating XML Documents Using the XML Schema
	4.6. Using Altova XMLSpy
	4.7. Microsoft MSXML2 Windows Scripting Host Application
	4.7.1. Software Installation
	4.7.2. Application Execution

	5. Appendix A: MSXSD.JS Source and Batch Files
	6. Application Design Reference Manuals
	6.1. Introduction
	6.1.1. Intended Audience
	6.1.2. SDP Application User’s Manuals

	6.2. SDP Application System Architecture
	6.3. SDP Application Module Descriptions
	6.4. Application Development Environment
	6.4.1. Open Source – Open Platform
	6.4.2. Operating Systems
	6.4.3. Data Encoding Formats
	6.4.4. Databases
	6.4.5. Programming Languages
	6.4.6. Directory Structure
	6.4.6.1. Native Data Processing and Data
	6.4.6.2. SDP Data Processing and Data

	6.5. Appendix A: LIBus2Sdp Conversion Setup and User’s Manual
	6.6. Appendix B: RTIF2Sdp Conversion Setup and User’s Manual
	6.7. Appendix C: STIF2Sdp Conversion Setup and User’s Manual
	6.8. Appendix D: SDP Csv2Xml Conversion Setup and User’s Manual
	6.9. Appendix E: SDP Xml2Csv Conversion Setup and User’s Manual
	6.10. Appendix F: SDP Csv2Gtfs Conversion Setup and User’s Manual

	7. The SDP and Metadata
	7.1. Introduction
	7.2. What is SDP Metadata?
	7.3. Why SDP Metadata
	7.4. SDP Metadata XML Schema
	7.4.1. Overview
	7.4.2. SDP Metadata Requirements
	7.4.3. Metadata XML Schema Model

	7.5. Appendix A: XMLSpy Schema Notation

